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When Russell was Wfteen, he was given a copy of W.yK. CliTord’s The Common
Sense of the Exact Sciences (1886). Russell later recalled reading it immediately
“with passionate interest and with an intoxicating delight in intellectual clar-
iWcation”. Why then, when Russell wrote An Essay on the Foundations of Geom-
etryz (1897), did he choose to defend spaces of homogeneous curvature as a
priori? Why was he almost completely silent thereafter on the subject of
CliTord, and his writings on geometry and space? We suggest that Russell may
have avoided CliTord’s hypothesis that space had heterogeneous curvature
because it seemed impossible to reconcile a coherent theory of measurement
with a space of variable curvature. Whitehead objected to Einstein’s general
theory of relativity on this basis, formulating an alternate theory that preserved
the constant curvature of space and, therefore, a familiar sense of measurement.
After Einstein’s general theory, Russell chose to distance himself from the
position he argued in the Essay.

Wyilliam Kingdon CliTord (1845–1879), the gifted Victorian
mathematician and public champion of scientiWc thought,
was a man in whom Russell saw a reXection of himself. They

had, indeed, a lot in common: both were Cambridge-trained mathemati-
cians with wide intellectual interests and a gift for writing about them in
a popular manner, both were members of the Cambridge Apostles, both
were freethinkers, and both shared a sort of swift, intransigent intellec-
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Russell, CliVord, Whitehead and DiVerential Geometry 21

1 W.yK. CliTord, “The Ethics of Beliefz”, Contemporary Reviewz (1877), reprinted in his
Lectures and Essays, ed. L. Stephen and F. Pollock (London: Macmillan; 2nd edn., 1886),
vol. 2, pp. 177–211, at 186. This was the remark which provoked William James to write
an even more famous essay, “The Will to Believe” (1896), which purported to set out the
circumstances in which it was permissible to believe on no evidence at all. 

2 CliTord, The Common Sense of the Exact Sciences, 2nd edn. (London: Kegan Paul,
Trench, & Co., 1886). The copy is in Russell’s library (RL no. 2788). The Xyleaf is
inscribed “Bertrand Russell from his tutor J. Stuart. New Years Day 1888.” Apart from
a capital “L” pencilled into the left-hand margin of page 1, it is not annotated. Nothing
is known about Stuart, one of a long series of tutors who taught Russell at home up to
the age of sixteen.

3 See Russell’s preface to CliTord, The Common Sense of the Exact Sciences, ed. K.
Pearson and J.yR. Newman (New York: Knopf, 1946), as reprinted in Papers 11: 317; see
also N. GriUn and A. Lewis, “Bertrand Russell’s Mathematical Education”, Notes and
Records of the Royal Society of London 44 (1990): 51–71 (at 53). All subsequent references
to The Common Sense of the Exact Sciencesz are to the Knopf edition as reprinted by Dover
in 1955.

tual style which scorned established wisdom. In his essay “The Ethics of
Beliefz” (1877) CliTord famously maintained “it is wrong, everywhere,
and for any one, to believe anything upon insuUcient evidence.”1 This
was an inspiring doctrine for a young iconoclast, though Russell in ma-
turity held it in a more moderate (and more defensible) form: “it is un-
desirable to believe a proposition when there is no ground whatever for
supposing it true” (SE, p. 11).

Russell discovered CliTord early. When he was Wfteen, one of his
tutors, John Stuart, gave him a copy of The Common Sense of the Exact
Sciencesz (1886).2 Russell read it straightaway “with passionate interest and
with an intoxicating delight in intellectual clariWcation”.3 Fifty-seven
years later, Russell was called upon to write a preface for a reprint of the
book: his enthusiasm for it had evidently not diminished, and he de-
scribes the book in ecstatic terms. Yet, he acknowledges that, until he
came to write the preface, he had not even looked at the book since
reading it at Wfteen. Indeed, it has to be admitted that, for all Russell’s
enthusiasm for CliTord and their similarity of outlook, CliTord does not
bulk large in Russell’s corpus. There are only a handful of references to
him in Russell’s Collected Papers (most of them occurring in the article
he wrote on non-Euclidean geometry for the Encyclopaedia Britannicaz;
see Papers 3: 489–90, 501, 504), and a few in his books; but none, for
example, in A History of Western Philosophy. Yet it was not that Russell
lost his enthusiasm for CliTord and had to be reminded of it when he
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4 Russell to O. Morrell, no. 375, 10 March 1912. 
5 Russell, “A Turning-Point in My Life”, The Saturday Bookz 8 (1948): 143–4.

wrote the preface. In 1912 he told Ottoline Morrell that CliTord was “an
absolutely Wrst-rate mathematician, [who] cared immensely about
philosophy…. All his writing has the clearness and force that comes of
white-hot intellectual passion.”4 So one problem in dealing with Russell’s
encounter with CliTord is to explain this comparative silence. In this
paper, we hope to explain one part of it: the fact that Russell, in his early
work on the philosophy of geometry, did not take more seriously
CliTord’s ideas about spaces of variable curvature. We suggest Russell
had good reason to neglect such models of space. A coherent theory of
measurement for spaces of non-constant curvature had not been pro-
duced. This may explain why Russell chose to defend as a priori spaces
of constant curvature in his 1897 book, An Essay on the Foundations of
Geometry. CliTord did not clarify how measurement was operational in
spaces of heterogeneous curvature; neither did Einstein’s theory of
relativity oTer a solution to this stumbling block. Whitehead objected to
Einstein’s theory on these grounds. In its place Whitehead proposed an
alternate theory that preserved the constant curvature of space and,
therefore, a familiar sense of measurement as well.

i.wrussell, clifford, and clifford’s philosophy
of mathematics

It is clear from Russell’s preface to The Common Sense of the Exact Sci-
ences that one of the causes of his youthful enthusiasm for CliTord was
what he took to be CliTord’s belief that the exact sciences, and in par-
ticular mathematics, could become agents for social and material prog-
ress. In a short article written a few years after the preface, Russell de-
scribes his early belief that the study of mathematics could help humanity
achieve a better society and a higher state of wellbeing:

I had thoughts of mathematics, as the Russians still do, as primarily a help in
making machines, and in day-dreams I have seen myself inventing some won-
derful labour-saving device … I began to hope that human motives could be
treated like forces in mechanics, and to imagine a quasi-mathematical psychol-
ogy which would have been something like that in the third book of Spinoza’s
ethics.5



S
e

p
te

m
b

e
r 

2
7

, 
2

0
0

8
 (

1
:0

9
 p

m
)

G:\WPData\TYPE2801\russell 28,1 048RED.wpd

Russell, CliVord, Whitehead and DiVerential Geometry 23

6 A.yR. Garciadiego, Bertrand Russell and the Origins of the Set-theoretic “Paradoxes”
(Boston: Birkhäuser Verlag, 1992), p. 48; Monk, 1: 27.

7 CliTord, Lectures and Essays, ed. L. Stephen and F. Pollock, 2 vols. (London:
Macmillan, 1879): 124–57. 

Russell identiWed these thoughts as arising from his reading of CliTord,
from whom he adopted the idea that mathematics was the exemplar of
reason, and that reason was the foundation of all sound belief.6 The
search for certainty of belief through sound reasoning was connected, for
Russell, with social and material progress. Through the acquisition of
sound and certain knowledge, Russell believed that the human race
might become “more humane, more tolerant, and more enlightened,
with the consequence that war and disease and poverty, and the other
major evils of our existence, would continually diminish” (Papers z11:
320). As such, mathematics, the most important and potentially precise
kind of reasoning, became the focus of Russell’s larger quest to Wnd
certainty in knowledge (PfM, p. 10). “In this beneWcent process”, Russell
wrote in his preface,

rational knowledge was to be the chief agent, and mathematics, as the most
completely rational kind of knowledge, was to be in the van. This faith was
CliTord’s, and it was mine when I Wrst read his book; in turning over its pages
again, the ghosts of the old hopes rise up to mock me. (Papersz 11: 320)

It is odd that Russell identiWes his “old hopes” as having arisen from
The Common Sense of the Exact Sciences, since this book does not cast
certainty of belief or sound reasoning as agents of social progress. Nor are
these sentiments strongly evidenced in CliTord’s collected Lectures and
Essays, though Russell may have read some of his own enthusiasm into
“On the Aims and Instruments of ScientiWc Thought” (1872).7 Though
a great deal of that lecture is taken up with emphasizing the gap between
the exactness of the mathematical sciences and the approximations of the
experimental ones, CliTord does argue that scientiWc thought is not
thought about scientiWc matters but thought of a certain exact and
evidence-guided kind about any matter at all. He looks forward, for
example, to the development of psychology as an exact science (p. 142),
and he scorns any idea, whether derived from Kant and the German
idealists or from Herbert Spencer, of the ultimate unknowability of
things. CliTord gets perhaps as close as he ever gets to stating Russell’s



S
e

p
te

m
b

e
r 

2
7

, 
2

0
0

8
 (

1
:0

9
 p

m
)

G:\WPData\TYPE2801\russell 28,1 048RED.wpd

24 sylvia nickerson & nicholas grif {f {in

8 In Lectures and Essaysz, 1: 254–340. Russell made a summary of parts of this work in
1896 (ra1 210.006550–f4), though it is diUcult to see that it had any impact on his own
thinking at this time.

9 Howard Smokler, “ScientiWc Concepts and Philosophical Theory: an Essay in the
Philosophy of W.yK. CliTord” (unpublished ph.d. thesis, Columbia U., 1959), p. 109.

hopes at the end of the lecture:

By saying that the order of events is reasonable we do not mean that everything
has a purpose, or that everything can be explained, or that everything has a
cause; for neither of these is true. But we mean that to every reasonable question
there is an intelligible answer, which either we or posterity may know by the
exercise of scientiWc thought…. Remember, then, that it is the guide of action; that
the truth which it arrives at is not that which we can ideally contemplate
without error, but that which we may act upon without fear; and you cannot fail
to see that scientiWc thought is not an accompaniment or condition of human
progress, but human progress itself. (Pp. 156–7)

The youthful Russell dreamed that the growth of rational knowledgez—z
mathematics being the most rational knowledge of allz—zcould ameliorate
mankind. While Russell identiWed this as CliTord’s thought, it may not
be the case that CliTord held this view himself.

Despite Russell’s enthusiasm, CliTord’s philosophy of mathematics,
expressed most fully in “The Philosophy of the Pure Sciences”,8 was less
than fully coherent, at least partly because CliTord’s early death had cut
short its development. The Common Sense of the Exact Sciences itself was
left incomplete at his death and parts of the text were posthumously
edited, revised and even written by Karl Pearson. Howard Smokler, in
one of the few studies of CliTord’s philosophy of mathematics, con-
cluded that his account of arithmetic was “too obscure to be properly
evaluated”.9 It was an amalgam of empiricist and rationalist elements.
On the rationalist side, there were principles of organization, including
principles by which sensory experience was arranged to yield distinct
objects, a principle of the uniformity of nature, and principles for the
analysis of concepts to give deWnitions. On the empirical side there was
the sensory input itself and the process of counting. Starting from the
concept of z“distinct object”, the principle of the uniformity of nature
was used to ensure that objects remained distinct throughout space and
time and under diTerent arrangements. Through counting, numerals
could be assigned to an ordered sequence of sets of distinct objects, each
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10 “The Philosophy of the Pure Sciences”, in Lectures and Essaysz, 1: 337.
11 J.yS. Mill, A System of Logic (1843), iii, xxiv, 5; in Vol. 7 of The Collected Works of

John Stuart Mill, ed. J.yM. Robson (Toronto: U. of Toronto P., 1973).

set containing one more element than its predecessor. Finally, via the
principles governing deWnition, arithmetical operations could be deWned
in terms of counting. The approach had serious limitations, oTering no
obvious way to extend the process to signed integers or real numbers. It
is diUcult to discern what his attitude was to the real numbers, because
he held that the science of number and the science of continuous quan-
tity were two fundamentally diTerent things, the one founded on the
“hypothesis of the distinctness of things” and the other on the “totally
diTerent hypothesis of continuity”. Nonetheless, he goes on to note the
“close and extensive” relations between the two sciences; so close, indeed,
as to leave one perplexed as to how two such similar sciences could be
based upon apparently contradictory hypotheses.10 Perhaps the best that
can be said of CliTord’s account is that, in spite of itself, it makes clear
why mid-nineteenth-century mathematicians were looking for an arith-
metical theory of continuous quantity, though CliTord himself thought
such attempts were “logically false and educationally mischievous” (p.
337). Of these views, inasmuch as they appear in The Common Sense of
the Exact Sciences, Russell says diplomatically in his preface:

The opening chapter, on Number, although it says admirably what, in the
seventies, seemed best worth saying, cannot tell the reader what is now known
to be most important, since in this subject the great advances made by Ded-
ekind, Cantor, and Frege came in the decade immediately following CliTord’s
death. He was, moreover, a geometer rather than an analyst, and it was in geom-
etry that his mathematical intuition appeared at its best. (Papers 11: 318)

CliTord’s approach, for all its weaknesses to modern eyes, was not un-
sophisticated by the standards of its day. Reading it in 1888 probably
inoculated Russell against Mill’s much cruder account of arithmetic
truths as inductive generalizations from empirical experience in A System
of Logicz,11 which he read two years later. Evidently he had not accepted
CliTord’s account of how we come by knowledge of arithmetic, but he
must have recognized that CliTord’s approach oTered rather better hopes
of an explanation than Mill’s.

The main positive lesson that Russell took from CliTord’s book con-
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12 Cf. “The Philosophy of the Pure Sciences”, pp. 295–300.
13 Garciadiego, pp. 47–8. See also Papers 11: 318.
14 Who was responsible for writing the whole of the key chapter on position (Chap.

4).

cerned geometry. When he Wrst read the book, Russell had only recently
learnt of non-Euclidean geometry and, like many people in that position,
was considerably perplexed by it. It must have seemed, at the very least,
a dire warning of human fallibility. CliTord did not ignore that aspect of
it, emphasizing that what had previously been taken to be certain and
exact knowledge of even those parts of the universe that were inaccessible
to human observation, was no longer certain, could not be established as
exact, and could not be assumed to hold everywhere.12 But unlike many
philosophers who thought that non-Euclidean geometry must be resisted
lest thought refute itself, CliTord maintained that this was a great step
forward, as important as that taken by Copernicus, and an intellectual
adventure as well, a “relief from the dreary inWnities of homaloidal space”
(ibid., p. 323). From a philosophical point of view, it is hard to overstate
the elegance and clarity with which CliTord presents the new geometries
in the third of the lectures on the philosophy of the pure sciences; the
presentation in The Common Sense of the Exact Sciences is much briefer
and more purely didactic. Nonetheless, reading the latter book laid to
rest, at least to a limited extent, Russell’s feeling of geometrical doubt
that had been occasioned by non-Euclidean geometry (MPD, p. 36), no
doubt, as Garciadiego suggests,13 by helping him understand that non-
Euclidean geometries do not contradict the Euclidean one. “[W]hat I
read in this book”, he said, “did much to diminish the bewilderment I
had been feeling. In spite of all the work that has since been done, hardly
anything that CliTord (or Karl Pearson14) says on this subject could be
bettered by a writer in the present day” (Papers 11: 318).

It is surprising, then, considering how emphatically Russell cites
CliTord’s book as an early inXuence on his thought, to Wnd that when
Russell came to work on the philosophy of non-Euclidean geometry for
his Wrst philosophical book, An Essay on the Foundations of Geometry
(1897), based on his fellowship dissertation of 1895, he not only largely
ignores CliTord’s work, but dismisses as impossible kinds of geometry on
which CliTord had set much store. Russell makes only two brief refer-
ences to CliTord in his Essay. Both cite CliTord as being among a num-
ber of scientists who hold “a naïve realism as regards absolute space” and
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15 Russell, An Essay on the Foundations of Geometry (New York: Dover, 1956), pp. 93,
97. Further references to Russell’s Essayz (abbreviated as EFGy) refer to this edition, which
is a reprint of the 1897 original published by Cambridge University Press. Routledge reis-
sued the Essay in 1996 with a typesetting that changed the page numbers from the orig-
inal and Dover editions.

16 “The Philosophy of the Pure Sciences”, Lectures and Essays, 1: 320.

who investigate physical space “in the spirit of a chemist discussing
whether hydrogen is a metal, or an astronomer discussing the nebula
hypothesis”.15 In his Wrst reference to CliTord, Russell says that CliTord
“seems to have thought that we actually see the images of things on the
retina”, which Russell uses to illustrate his point that CliTord conceives
geometry as he does physics, as “an experimental science” (EFG, pp. 93,
94). CliTord does see the science of space as entirely empirical and
subject to the limits of physical perception. He explains in “The Philoso-
phy of the Pure Sciences” that each experience of space is “Wlled in” by
our thought, not at random but by certain rules. He gives as an example
the fact that “Parallelism is impossible on the curved pictures of my
retina; so [the condition that we call parallel] is part of the Wlling in [of
our thought]” (p. 261). In Russell’s second reference, he notes that
CliTord’s empirical view of space leads him to Wnd current evidence
wholly insuUcient to decide the nature of space on scales of the inWnite
and the inWnitesimal (EFG, p. 97). Russell refers to a passage where
CliTord states that “Even apart, then, from our knowledge of the way
nerves act in carrying messages, it appears that we have no means of
knowing anything more about an aggregate than that it is too Wne
grained for us to perceive its discontinuity, if it has any.”16 Russell argues
that more than one model of space could be acceptable to our a priori
need to intuit space, and so he agreed with CliTord that the philosophi-
cal possibility of non-Euclidean geometry as the structure of space
demoted the science of space to the level of empirical uncertainty existent
in chemistry or astronomy. As Russell admits, the science of space is now
“left to the mercy of approximate observations of stellar trianglesz—za
meagre support, indeed, for the cherished religion of our childhood [i.e.
Euclidean geometry]” (EFG, p. 97). Russell acknowledges that non-
Euclidean geometry has opened up the possibility that space is non-
Euclidean (a possibility that he takes very seriously). But he does not
accept CliTord’s more radical suggestion that space may have a variable
curvature, let alone his conjecture that non-constant curvature may ex-
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17 CliTord, Mathematical Papers, ed. Robert Tucker (New York: Chelsea, 1968; 1st
edn., 1882), pp. 21–2. The abstract was published, originally in Proceedings of the Cam-
bridge Philosophical Society, six years after the paper was given.

18 Nothing seems to have survived of his eTorts on double refraction. It is worth
mentioning that CliTord’s were not the Wrst speculations along similar lines. Kant, as
early as 1746, had speculated that the properties of space might depend upon the dis-
position of forces (Gedanken von der wahren Schätzung der lebendigen Kräfte, in Gesam-
melte Schriften [Berlin: Preussischen Akademie der Wissenschaften, 1902], 1: 1–181), and
Lobachevski in 1829 had made much more sophisticated proposals for the geometrical
treatment of forces (Zwei Geometrische Abhandlungen [Leipzig: Teubner, 1898–99], 1: 1–
66).

19 For further evidence that CliTord took the view seriously, see M. Chisholm, Such
Silver Currents: the Story of William and Lucy CliVord 1845–1929z (Cambridge: Lutterworth
P., 2002), pp. 161, 164–5. 

plain the eTects of various physical forces.
It is this last point which makes CliTord’s position so radical. In the

most famous of CliTord’s speculations on the topic, “On the Space-
Theory of Matter” (1870), a paper which exists only as an abstract17 and
which is sometimes cited as an anticipation of Einstein’s general theory
of relativity, he suggests that curvature “is continually being passed from
one portion of space to another after the manner of a wave”, that the
resulting variation in curvature is what “we call the motion of matterz”,
and that “in the physical world nothing else takes place but this varia-
tion” (p. 22). He reports that he has been attempting to explain “in a
general way” the laws of double refraction on this hypothesis, “but have
not yet arrived at any results suUciently decisive to be communicated”
(ibid.).18 The idea that the curvature of space may have physical causes
is one that hardly Wgures at all in Lectures and Essays. But it does reappear
stated quite strongly in The Common Sense of the Exact Sciences, albeit in
passages actually written by Karl Pearson.19 In particular, the chapter on
position, which was entirely written by Pearson, concludes with the fol-
lowing paragraph:

These postulates [of geometry] are not, as is too often assumed, necessary and
universal truths; they are merely axioms based on our experience of a certain
limited region.… The danger of asserting dogmatically that an axiom based on
the experience of a limited region holds universally will now be to some extent
apparent to the reader. It may lead us to entirely overlook, or when suggested
at once reject, a possible explanation of phenomena. The hypotheses that space
is not homaloidal, and again, that its geometrical character may change with
time, may or may not be destined to play a great part in the physics of the fu-
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ture; yet we cannot refuse to consider them as possible explanations of physical
phenomena, because they may be opposed to popular dogmatic belief in the
universality of certain geometrical axiomsz—za belief which has arisen from cen-
turies of indiscriminating worship of the genius of Euclid. (Pp. 203–4)

Just before this, Pearson added the following, more deWnite note of his
own:

The most notable physical quantities which vary with position and time are
heat, light, and electro-magnetism. It is these which we ought peculiarly to con-
sider when seeking for any physical changes, which may be due to changes in the
curvature of space…. [I]f we assume as an axiom that space resists curvature with
a resistance proportional to the change, we Wnd that waves of “space-displace-
ment” are precisely similar to those of the elastic medium [the ether] which we
suppose to propagate light and heat. We also Wnd that “space-twist” is a quantity
exactly corresponding to magnetic induction, and satisfying relations similar to
those which hold for the magnetic Weld. It is a question whether physicists might
not Wnd it simpler to assume that space is capable of a varying curvature, and of
a resistance to that variation, than to suppose the existence of a subtle medium
pervading an invariable homaloidal space. (Ibid., p. 203n.)

 It was perhaps sheer misfortune that Pearson did not include gravitation,
along with heat, light and electromagnetism, as a physical phenomenon
that might be susceptible of a geometrical explanation, for it was gravita-
tion that proved susceptible to such an explanation in Einstein’s general
theory of relativity. 

Although Russell makes no mention of CliTord’s radical theory in his
Essay, he was certainly cognizant of it. In an 1893 paper he wrote for
James Ward’s course on metaphysics, Russell attempts to defend Kant’s
view of geometry from the spectre of non-Euclidean descriptions of
space. In this paper he writes, “W.xK. CliTord even hints, in his wild
enthusiastic way, that changes of shape such as we ascribe to changes of
temperature, etc., might possibly be explicable as due to changes in the
measure of curvature of space; this suggestion is of course rather prepos-
terous …” (Papersz 1: 127).  Russell admitted non-Euclidean spaces of
constant curvature as a priori in his Essay, a qualiWed version of his
complete defence of Kant in this 1893 paper. That was as far as he was
willing to admit, in 1897, that new geometries had import for the science
of space. We should note, however, that in holding this position, Russell
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20  In his review of the Essay in Science, Halstead praises Russell for admitting the
empirical and unknown nature of the actual curvature of space, noting that other
philosophers continue to subordinate non-Euclidean spaces in favour of Euclidean ones.
On the other hand, Halstead was scathingly critical of certain historical inaccuracies
Russell made in Chapter 1. See G.xB. Halstead, “The Foundations of Geometry”, Science
6 (1897): 487–91.

21 Hermann von Helmholtz, “Ueber die thatsächlichen Grundlagen der Geometrie”
(1866) and “Ueber die thatsächlichen, die der Geometrie zum Grunde liegen” (1868), in
his Wissenschaftlichen Abhandlungen (Leipzig: Barth, 1882–95), 2: 610–39.

22 The Common Sense of the Exact Sciences, pp. 200–1n.

was more radical than some of his colleagues.20

In his preface to the 1946 edition of CliTord’s Common Sense, Russell
described CliTord’s insight into the relation of physics to geometry as
“prophetic”. He commented: “All that is said [by CliTord] on the
relation of geometry to physics is entirely in harmony with Einstein’s
theory of gravitation, which was published thirty-six years after CliTord’s
death” (Papers z11: 317). Nonetheless, the view of geometry that CliTord
advocated and that underlay general relativity was one that Russell, in the
Essay, declared to be impossible on a priori grounds. Later in life Russell
acknowledged that “Einstein’s revolution swept away everything at all
resembling [the] point of view” of the Essay (MPD, p. 40).

ii. russell, whitehead, and the theory of measurement
in geometries of variable curvature

Russell’s purpose in the Essay was to determine, in the light of non-
Euclidean geometry, which geometrical principles were a priori and
which a posteriori. In formulating the principles Russell was much in-
Xuenced by Helmholtz,21 in particular in adopting the principle that
space is homogeneous, that is, it has everywhere the same curvature.
Russell argued in the Essay that the homogeneity was an a priori require-
ment of the concept of space; curvature could be positive, negative or
zero (that, for Russell, was an empirical matter), but it must of necessity
be everywhere the same (EFG, p. 149). CliTord strongly disagreed with
the idea of raising the homogeneous curvature of space to the level of a
philosophical postulate.22 CliTord was astutely aware of the limits that
conWned speculation regarding the actual nature of physical space. The
most apt geometrical description of space was to CliTord a strictly em-
pirical question, to which he could not provide a certain answer, since



S
e

p
te

m
b

e
r 

2
7

, 
2

0
0

8
 (

1
:0

9
 p

m
)

G:\WPData\TYPE2801\russell 28,1 048RED.wpd

Russell, CliVord, Whitehead and DiVerential Geometry 31

23 Ibid., pp. 201, 203; “Philosophy of the Pure Sciences”, pp. 320–3.
24 The Common Sense of the Exact Sciences, p. 201.
25 See Imré Toth, “Gott und Geometrie: Eine viktorianische Kontroverse”, in D.

Henrich, ed., Evolutionstheorie und ihre Evolutionz (Schriftenreihe der Universität Regens-
burg, bd. 7, 1982), pp. 141–204. The issue is even mentioned by Ivan Karamazov in Dos-
toevsky’s novel.

26 S. Andersson, In Quest of Certainty: Bertrand Russell’s Search for Certainty in Religion
and Mathematics up to The Principles of Mathematics (1903) (Stockholm: Almqvist &
Wiksell International, 1994).

the experience of space on a human level reveals nothing of the true char-
acter of space on scales ranging from the inWnitely small to the inWnitely
large.23 Russell, in contrast, defended the Kantian idea that certain a pri-
ori axioms of space are necessary for human experience. Such axioms are
achieved through logical analysis and philosophical argumentation; once
analyzed such axioms are held to be beyond empirical testability, as hu-
man experience simply could not have them any other way. It was
CliTord’s opinion that assertions concerning the absolute, a priori truth
of a certain geometry stemmed from a kind of dogmatic thinking “rather
characteristic of the mediaeval theologian than of the modern scientist”.24

There may be something in the view that Russell’s attachment to the
a priori in geometry derived from his early, quasi-religious desire for cer-
tainty. As an adolescent, Russell began to look towards the discipline of
mathematics as the area within which he might Wnd certain knowledge:
“I wanted certainty in the kind of way in which people want religious
faith. I thought that certainty is more likely to be found in mathematics
than elsewhere” (PfM, p. 53). When Russell was eighteen he rejected
Christianity and became agnostic. Scholars who have studied Russell’s
life have noted the connection between Russell’s loss of religious faith
and his search for certainty in mathematics. There was indeed consider-
able Victorian anguish on the very point which concerns us.25 Russell’s
biographers have documented the role his “mathematical mysticism”
played in the unfolding of his early life’s work (e.g. Monk); other Russell
scholars have made a study of his “personal religion”.26 It took a long
time for Russell to become comfortable in his agnosticism. Something of
this can be seen in his remark, not to be taken too seriously, that
CliTord’s approach to geometry left “meagre support” for the “religion
of our childhood” (quoted above). It can be seen also, without tongue in
cheek, in the remark that immediately follows, that “the possibility of an
inaccuracy so slight, that our Wnest instruments and our most distant
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27 J. Richards, Mathematical Visions: the Pursuit of Geometry in Victorian England z(San
Diego: Academic P., 1988), pp. 112–13.

28 All the arguments are discussed in detail in N. GriUn, Russell’s Idealist Appren-
ticeship (Oxford: Clarendon P., 1991), pp. 154–63.

29 Russell cites particular instances at many places in his writings between 1893 and
1897; e.g. Papers 2: 124, 273–4, 295–6; EFG, p. 157. The general case is argued at Papers
2: 55–6, 78–9.

parallaxes show no trace of it” which CliTord’s account of geometry
would leave open, “would trouble men’s minds no more than the ana-
logous chance of inaccuracy on the law of gravitation, were it not for the
philosophical import of even the slenderest possibility in this sphere”
(EFG, p. 97). The a priori in geometry was not to be given up lightly.

CliTord, by contrast, rejoiced rather than mourned on the occasion of
the discovery of non-Euclidean geometry. CliTord did not wish to have
the kind of certain transcendental knowledge about the universe in all its
immensity and eternity that Euclidean geometry had seemed to oTer. To
CliTord, such universally applicable knowledge seemed simply unattain-
able. Joan Richards links this aspect of CliTord’s philosophy of science
with his personal agnosticism, a view that for him came very close to
atheism.27 CliTord, like Russell, gave up religious faith in his youth, un-
der the inXuence of the debate surrounding the signiWcance of Darwin’s
Origin of Species. While CliTord abandoned his religious faith without
regret, Russell, after giving up religion at the age of eighteen, transferred
his lingering desire for religious faith into his search for certainty in
mathematics.

But such social-constructivist explanations, though interesting (and
sometimes plausible), can hardly give a full account of the matter. In the
nature of things, they leave the explanandumz radically underdetermined,
and in an area where it might be expected to be rather closely deter-
mined. Russell, after all, had, or at least thought he had, good reasons for
holding that the constant curvature of space was an a priori necessity.
The most important of his reasons is the following transcendental argu-
ment from the possibility of measurement.28 Russell argues, Wrst, that all
measurement depends upon the measurement of space. It is easy to con-
Wrm this in particular cases: time is measured by the apparent motion of
the sun, weight by the stretching of a spring, temperature by the height
of mercury in a thermometer, etc.29 The claim, of course, cannot be con-
clusively demonstrated by citing examples alone, but it seems plausible
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30 Cf. The Common Sense of the Exact Sciences, pp. 90–1.
31 Russell repeats the argument that distance cannot be measured in spaces of variable

curvature in his 1902 article on non-Euclidean geometry for the tenth edition of the
Encyclopaedia Britannica (cf. Papers 3: 492–3).

nonetheless and CliTord seems inclined to agree with it.30 Russell’s sec-
ond point is that in any space of constant curvature spatial measurement
is always assured by means of congruence relations between spatial Wg-
ures which are preserved no matter how the Wgures are moved through
space. This, however, he maintains would not be possible in a space of
variable curvature. In such a geometry, he writes, suppose that “the
length of an inWnitesimal arc in some standard position were dsz; then in
any other position p its length would be ds . fy(p), where the form of the
function fy(p) must be supposed known. But how are we to determine
the position pzz?” (EFG, p. 152). To do so, we require p’s coordinates, i.e.,
“some measurement of distance from the origin”, but this will require
knowing what the function fy(p) is. Russell continues:

For suppose the origin to be O, and Op to be a straight line whose length is
required. If we have a measuring rod with which we travel along the line and
measure successive inWnitesimal arcs, the measuring rod will change its size as we
move, so that an arc which appears by the measure to be ds will really be fy(s) .
ds, where sz is the previously traversed distance. If, on the other hand, we move
our line Op slowly through the origin, and measure each piece as it passes
through, our measure, it is true, will not alter, but now we have no means of
discovering the law by which any element has changed its length in coming to
the origin. Hence, until we assume our function fy(p), we have no means of
determining p…. It follows that experience can neither prove nor disprove the
constancy of shapes throughout motion, since, if shapes were not constant, we
should have to assume a law of their variation before measurement became
possible, and therefore measurement could not itself reveal that variation to us.

(EFG, pp. 152–3)

Thus Russell concludes that unless space is of constant curvature, space-
measurement is impossible, and if space-measurement is impossible, no
form of measurement is possible. Thus the constant curvature of space
is a necessary a priori condition for the possibility of measurement.31

Now this, on the face of it, seems to us a rather strong argument and
one which thus bodes ill for general relativity unless it can in some way
be rebutted. And so, indeed, it seemed to Whitehead, to the point that,
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32 Whitehead’s theory is presented most thoroughly in The Principle of Relativity
(Cambridge: Cambridge U. P., 1922), where, between lectures on the philosophy of
nature and mathematical notes on the theory of tensors, the physical aspects of the theory
are presented with Einsteinian brevity. But the philosophical basis for it can also be
found in An Enquiry concerning the Principles of Natural Knowledge (Cambridge: Cam-
bridge U. P., 1925; 1st edn. 1919) and The Concept of Nature (Cambridge: Cambridge U.
P., 1955; 1st edn. 1920), which has a user-friendly summary in Chapters 8 and 9. The
basic idea is also stated very brieXy at the end of Process and Reality: an Essay in Cos-
mology, corrected edn., ed. D.yR. GriUn and D.yW. Sherburne (New York: Free P.,
1978), pp. 332–3. Russell, in his own book on relativity, The ABC of Relativity (London:
Kegan Paul, Trench, Trubner, 1925), makes no mention of Whitehead’s dissent, nor of
the underlying issue.

33 The Principle of Relativity, p. v.
34 Ibid. “Casual heterogeneity” was a frequent term of abuse: cf. also pp. 25, 65.
35 Whitehead never refers to Russell’s parallel argument in the Essay. In part this was

probably because Whitehead was well aware that Russell had repudiated the entire

when general relativity was proposed, he put forward an alternative
theory which preserved the constant curvature of space.32 Whitehead
presents his theory in a Euclidean space which is pervaded by two Welds
representing mass impetus and electromagnetic impetus, thus preserving
“the old division between physics and geometry”.33 But he uses Euclidean
geometry only because he thinks it provides “the simplest exposition of
the facts of nature”; any geometry of constant curvature would serve his
purpose equally well: “[i]t is this uniformity which is essential to my
outlook” against what he refers to as the “casual heterogeneity of …
Einstein’s later theory”.34

It was the “casual heterogeneity” of space on Einstein’s theory which,
Whitehead thought, would render the concept of distance meaningless:

I cannot understand what meaning can be assigned to the distance of the sun
from Sirius if the very nature of space depends upon casual intervening objects
which we know nothing about. Unless we start with some knowledge of a sys-
tematically related structure of space-time we are dependent upon the contin-
gent relations of bodies which we have not examined and cannot prejudge.

(Ibid., pp. 58–9)

The basis of his complaint was that distance had to be deWned in terms
of congruence and congruence could only be deWned in spaces of con-
stant curvature. This was essentially the same objection as Russell had
brought against geometries of variable curvature twenty-Wve years pre-
viously.35 The actual arguments which Whitehead gave in his books for
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philosophical position that underlay the Essay. But it may also have been because Russell
may have got the basic idea of the dependence of space measurement on constancy of
curvature from Whitehead himself when he was Whitehead’s student. There seems no
way to conWrm this because there is no evidence to suggest when Whitehead came by the
idea; it seems, however, very unlikely that it was in reaction to studying the general
theory of relativity.

36 Cf. The Principle of Relativity, Chap. 3, and The Concept of Nature, Chap. 6. C.yD.
Broad, in his obituary of Whitehead (Mindz 57 [1948]: 143–4), complains vehemently of
the extent to which Whitehead’s work on relativity was ignored by the scientiWc com-
munity, but notes that Whitehead himself was partly to blame on account of the obs-
curity of his writings. Einstein himself did not ignore it, but confessed in conversation:
“I simply do not understand Whitehead”z—zwhich gives some idea of the problem
(F.yS.yC. Northrop, “Whitehead’s Philosophy of Science”, in P.yA. Schilpp, ed., The Phi-
losophy of Alfred North Whiteheadz [New York: Tudor, 1951; 1st edn., 1941], p. 204). By
far the best account of the physics of the theory is J.yL. Synge’s three lectures on the
theory given at the University of Maryland in 1951. To the best of our knowledge these
never appeared in print, although a mimeographed typescript was released: J.yL. Synge,
The Relativity Theory of A.yN. Whitehead (University of Maryland Institute for Fluid
Dynamics and Applied Mathematics, 1951). Synge himself, though initially sympathetic
to Whitehead’s theory, abandoned it in the face of empirical evidence presented by Clark
(see n. 48 below). The lectures have been published on the web by A.yJ. Coleman, an-
other Whitehead defender, http://arxiv.org/PS_cache/physics/pdf/0505/0505027v2.pdf
(accessed 18 Sept. 2008).

this conclusion are long and obscure and pervaded by the sort of termi-
nological innovation for which he is notorious and which preclude a
brief summary.36 But in this case, mercifully, Whitehead provided his
own summary in a newspaper article:

Now the spatial and temporal relations of event-particles to each other are
expressed by the existence in space (in whatever sense that term is used) of
points, straight lines, and planes. The qualitative properties and relations of
these spatial elements furnish the set conditions which are a necessary pre-
requisite of measurement. For it must be remembered that measurement is
essentially the comparison of operations which are performed under the same
set [ofz] assigned conditions. If there is no possibility of assigned conditions ap-
plicable to diTerent circumstances, there can be no measurement. We cannot,
therefore, begin to measure in space until we have determined a non-metrical
geometry and have utilized it to assign the conditions of congruence agreeing
with our sensible experiences…. For this reason I doubt the possibility of
measurement in space which is heterogeneous as to its properties in diTerent
parts. I do not understand how the Wxed conditions for measurement are to be
obtained. In other words, I do not see how there can be deWnite rules of con-
gruence applicable under all circumstances. This objection does not touch the
possibility of physical spaces of any uniform type, non-Euclidean or Euclidean.
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37 Whitehead, “Einstein’s Theory; An Alternative Suggestion”, The Times Educational
Supplement, 12 Feb. 1920, p. 83; reprinted in Whitehead, Essays in Science and Philosophy
(New York: Philosophical Library, 1948), pp. 241–8 (at 246–7).

38 Tullio Levi-Civita, “Astronomical Consequences of the Relativistic Two-Body
Problem”, American Journal of Mathematics 59 (1937): 225–34.

39 H.yP. Robertson, “The Two-Body Problem in General Relativity”, Annals of Math-
ematicsz 39 (1938): 101–4, and A.yS. Eddington and G.yL. Clark, “The Problem of nz Bodies
in General Relativity Theory”, Proceedings of the Royal Society of London, series A, 166
(1938): 465–75. See Clark, “The Problem of Two Bodies in Whitehead’s Theory”, Pro-
ceedings of the Royal Society of Edinburgh, A, 64 (1954): 49–56. It was Clark’s later paper
that persuaded Synge, Whitehead’s only serious defender, to abandon the theory. Cf.

But Einstein’s interpretation of his procedure postulates measurement in
heterogeneous physical space, and I am very sceptical as to whether any real
meaning can be attached to such a concept.37

If all this is correct, then the general theory of relativity must be concep-
tually confused and Russell was certainly right to ignore CliTord’s geom-
etry of curvature when he wrote the Essay.

Now it was a signal merit of Whitehead’s theory that it had empirical
consequences. Where Einstein’s theory disagreed with Newton’s, White-
head’s agreed with Einstein’s. This covered the three main early experi-
mental tests of general relativity: the motion of the perihelion of Mer-
cury, the solar eclipse observations, and the gravitational red shift. But
there were at least two eTects on which Whitehead’s theory diTered from
Einstein’s: one concerned solar spectral lines, where Whitehead’s theory
predicted a speciWc interference between gravitational and electromag-
netic eTects, and the other arose from the notoriously diUcult two-body
problem in general relativity, where Whitehead’s theory predicted a sec-
ular acceleration of the centre of mass of two bodies. Both eTects were
too small to permit conWrmation of the theory in Whitehead’s day. In-
terest seems to have focused on the second eTect, perhaps because the
lack of general (or indeed, in those days, of any) solutions to the two-
body problem in general relativity was seen as a problem for the theory.
Whitehead calculated the eTect for the motion of the moon and tried to
conWrm it using astronomical tables, but without success. In 1937 Levi-
Civita38 published the surprising result that the same eTect was predicted
from general relativity and might be observed before too long in the
motion of binary stars. Levi-Civita’s results, however, were quickly
thrown into question in papers by Robertson and Eddington and Clark,
and Levi-Civita retracted his report.39 The general consensus now is that
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Synge’s letter of 1961 to Whitehead’s biographer, Victor Lowe, quoted in Lowe, Alfred
North Whitehead: the Man and His Work (Baltimore: Johns Hopkins U. P., 1990), 2: 127.

40 Cf. C.yM. Will, “Relativistic Gravity in the Solar System ii. Anisotropy in the
Newtonian Gravitational Constant”, Astrophysical Journal 169 (1971): 141–55. See also,
more generally, Will, Theory and Experiment in Gravitational Physics (Cambridge: Cam-
bridge U. P., 1993; 1st ed., 1981).

41 D.yR. Fowler, “DisconWrmation of Whitehead’s Relativity Theoryz—zA Critical
Reply”, Process Studiesz 4 (1974): 288–90, argues that, by using diTerent initial conditions,
the value predicted by Whitehead’s theory can be reduced by a factor of 100. Even so, if
we have understood the mathematics correctly (cf. Will, Theory and Experiment, p. 199),
this still leaves the predicted value greater by a factor of 10 than the upper limit of the
observed value.

42 Saul A. Basri, “Operational Foundations of Einstein’s General Theory of Rela-
tivity”, Reviews of Modern Physics 37 (1965): 288–315.

43 John C. Graves, The Conceptual Foundations of Contemporary Relativity Theory
(Cambridge, Mass.: mit P., 1971), Chap. 10. Graves’ discussion is particularly useful for
its criticism of earlier attempts, and (by Basri’s standards) is relatively non-technical.

Whitehead’s solution of the two-body problem is refuted by experience,
a result conWrmed most decisively by extremely accurate measurements
of the gravitational eTects of the tides.40 There remain those who are
unconvinced,41 but it would seem reasonable to conclude that White-
head’s theory has been experimentally refuted.

This, however, by no means ends our concerns. Whitehead’s alterna-
tive theory of gravitation may well be wrong, but his critique of Ein-
stein’s theory may well be correctz—zand, if it is, Russell’s early dismissal
of CliTord would be vindicated. The crucial issue for this paper is not
whether Whitehead’s theory is correct, but whether Einstein’s theory can
give a logically coherent and physically meaningful account of measure-
ment. This is an exceedingly complicated problem, and no new steps
towards its solution will be taken here. The key to the solution is the role
that the velocity of light plays in Einstein’s theory, a role which was
explicitly denied by Whitehead. While this much is agreed on all sides,
many detailed proposals end up giving circular deWnitions. Two that, so
far as we can see, do not are given by Basri42 and Graves43; both are
exceptionally complex. Basri gives an ingenious operational deWnition of
spatial interval and shows how to construct coordinate systems in ar-
bitrary Welds. This, on its own, is suUcient to reply to Whitehead’s ob-
jection. Graves, more generally, shows how spatio-temporal intervals, the
metric tensor, and the Riemann curvature tensor, can all be measured
without circularity using only the resources of general relativity. Assum-
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ing these results to be correct, Russell was right in claiming that Ein-
stein’s revolution swept away the philosophical position he had defended
in An Essay on the Foundations of Geometry. But whether, in 1959 in My
Philosophical Development, he had adequate grounds for being quite so
conWdent remains doubtful.


